Anterior and Lateral Lumbar Minimally Invasive Approaches: How to Choose

Lukas P. Zebala, MD
Assistant Professor
Washington University School of Medicine
St. Louis, MO
Disclosures

• Consultant:
 • K2M, Inc. (<$10,000 per year)
 • Medtronic (<$10,000 per year)

• Speaking Bureau:
 • Ulrich Medical (<$10,000 per year)
 • K2M, Inc. (<$10,000 per year)
 • Medtronic (<$10,000 per year)
Wash U Fellowship
Anterior Approach History

Muller Transperitoneal Approach

Iwahara Retroperitoneal Approach

Harmon Retroperitoneal Approach

1906

1944

Harmon Retroperitoneal Approach to Lumbar Spine

1995 Mayer mini-incision anterolateral

2004 Pimenta Transpsoas Lateral Lumbar Interbody Fusion

2012 Oblique Lumbar Interbody Fusion (Tubular/Mini-Open)

2012 Oblique Lumbar Interbody Fusion (Tubular/Mini-Open)
My Practice Evolution

LLIF
ALIF
OLIF
ALIF vs LLIF vs OLIF: How to Choose

- Surgeon Preference/Experience/Comfort
- Anatomy
 - Vascular
 - Neurological
 - Muscular
 - psoas
- # of levels
 - Include L5-S1
 - Above L2-3
- Deformity
 - Sagittal plane
 - Flexible/Rigid Deformity
 - Transitional L5-S1
- Patient Factors
 - Prior Retroperitoneal Exposure
 - BMI
 - Bone Density
ALIF

ADVANTAGES

- Familiar approach
- Direct visualization
- Anterior Support
 - Increased stiffness
 - Larger footprint
- Height restoration
 - Indirect Decompression
 - Direct Decompression
Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance.

Fig. 1. Bar graph comparing changes in foraminal height associated with ALIF and TLIF.
ALIF

Advantages
- No dural retraction as with PLIF/TLIF
- Revision for failed PLIF/TLIF

Cases
- Spondylolisthesis
- Revision of TLIF/PLIF
- Rigid deformity
- Infection
- Lumbar DDD
The Morbidity of an Anterior Thoracolumbar Approach

Adult Spinal Deformity Patients With Greater Than Five-Year Follow-up

Youngbae B. Kim, MD, Lawrence G. Lenke, MD, Yongjung J. Kim, MD, Young-Woo Kim, MD, Kathy Blanke, RN, Georgia Stobbs, RN, and Keith H. Bridwell, MD

Results demonstrated an appreciably high rate of:
- postoperative pain (32.3%)
- bulging (43.5%)
- functional disturbance (24.2%)

Rely on access surgeon
ALIF CASES: 26 yo F Grade IV Isthmic Spondylolisthesis

Courtesy of M. Gupta
ALIF CASES: 44 yo M L3-4 pseudarthrosis/cage migration/ectopic bone
ALIF CASES: 44 yo M L3-4 pseudarthrosis/cage migration/ectopic bone
ALIF CASES: 27 yo F post-discectomy lumbar DDD and pain
ALIF: When Do I Use It

- L3-4 through L5-S1 involved
- Lumbar Anatomy not good for LLIF
 - High iliac crest
 - “mickey-mouse” psoas
- Need to restore LL
 - L4-5, L5-S1
- High BMI
 - Vascular surgeon dependent
ALIF: When Do I Avoid It

- Avoid TAA
- History of retroperitoneal surgery, radiation
LLIF

Advantages

• Minimal Access Surgery
• No Need for access surgeon
• Extensile approach of Thoracic-Lumbar spine
 • L5-S1 not accessible
• Biomechanical Advantages of Anterior Cage as in ALIF
 • Rigid construct
 • Large footprint
• Height Restoration
 • Indirect Decompression
Radiological and clinical outcomes following extreme lateral interbody fusion.

Alimi M, Hofstetter CP, Cong GT, Tsiouris AJ, James AR, Paulo D, Elowitz E, Härtl R.

TABLE 3: Radiological outcome for 90 patients who underwent ELIF*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Preop</th>
<th>Postop</th>
<th>p Value</th>
<th>Last FU</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean coronal Cobb angle in degrees</td>
<td>23.8 ± 13.0</td>
<td>10.3 ± 8.55</td>
<td><0.0001 †</td>
<td>10.6 ± 8.85</td>
<td><0.0001 †</td>
</tr>
<tr>
<td>mean lumbar sagittal lordosis in degrees</td>
<td>39.7 ± 16.97</td>
<td>45.7 ± 12.73</td>
<td><0.0001 †</td>
<td>43.7 ± 14.73</td>
<td>0.014 †</td>
</tr>
<tr>
<td>mean foraminal height in mm</td>
<td>15.4 ± 3.99</td>
<td>18.5 ± 4.1</td>
<td><0.0001 †</td>
<td>17.5 ± 3.7</td>
<td><0.0001 †</td>
</tr>
<tr>
<td>mean disc height in mm</td>
<td>4.1 ± 2.48</td>
<td>7.5 ± 2.17</td>
<td><0.0001 †</td>
<td>6.8 ± 1.84</td>
<td><0.0001 †</td>
</tr>
</tbody>
</table>

* FU = follow-up.
† A p < 0.05 was considered statistically significant.
LLIF

Advantages

• No dural retraction as with PLIF/TLIF

Cases

• Lumbar Adjacent Segment Disease
• Post-laminectomy deformity
• Spondylolisthesis
• Infection
• Deformity
 • Sagittal Plane Restoration
 • Avoiding PSO w/ ACR
Disadvantages

- Less Direct Visualization
- No access to L5-S1 level
- L4-L5 variable accessibility
 - Table Break
- L4-L5 Nerve location variable
 - Femoral Nerve
- Psoas Muscle Dilation
 - Thigh Pain
 - Hip Flexion weakness
 - Genitofemoral nerve
 - Groin/thigh pain/dyesthesias
- Neurological Injury
- Vascular Injury
- Peritoneal Injury
- Need to pay attention to shape and size of psoas muscle
• Jack-Knife for 60 minutes resulted in transient neuropraxia
• 25 degrees of Jack-Knife starts the insult to the lumbar plexus
• Compression can occur against the L5 transverse process at L4-5
• Degree of stretch and compression coupled with time, dictates the amount of neural insult

Moro Zones

- Psoas vein
- L4-L5 disc space
- Anterior Zone
 - Zone 1
 - Zone 2
 - Zone 3
 - Zone 4
- Posterior Zone
- Lumbar plexus
- Left L4-L5 neuroforamen
Femoral Nerve

Zone 3 (27.8%)

Zone 4 (38.9%)

Zone P (27.8%)
Neurogram with Retractor
LLIF: 63 yo M L34 ASD with radiculopathy

Preop ODI 44
VAS back 7/10
Vas leg 9/10
LLIF: 63 yo M L34 ASD with radiculopathy

1 year ODI 6
LLIF: 67 yo F prior L4-S1 PSI/F w/ L2/L3 radiculopathy
LLIF: When Do I Avoid

- L5-S1 involved
- Large psoas
- Transitional Anatomy
- L4-5 with high iliac crest
 - Table break
- Facet OA
- Maintained disc heights with SS
 - Don’t trust indirect decompression
OLIF

- My rational for transitioning to OLIF from ALIF and LLIF
Rationale

- Iliac Crest Avoidance
- Muscle Sparing (Corridor)
- Femoral Nerve Avoidance
- All Disc Levels in One Position
- Ergonomics
- No Neuromonitoring
Spondy – L4/L5 (High Crest)
Rationale

- Iliac Crest Avoidance
- Muscle Sparing (Corridor)
- Femoral Nerve Avoidance
- All Disc Levels in One Position
- Ergonomics
- No Neuromonitoring

OLIF Corridor – NO MUSCLE
Non-Muscular Corridor
Psoas View During Retractor Removal

Cephalad

Posterior

Caudal
Rationale

- Iliac Crest Avoidance
- Muscle Sparing (Corridor)
- Femoral Nerve Avoidance
- All Disc Levels in One Position
- Ergonomics
- No Neuromonitoring

K-wire Piercing the Femoral Nerve at the Mid-Coronal Line of L4-5 Disc
Cadaveric: Femoral Nerve Distribution

Distribution by Zone

Zones (Moro)

L4

L5

Corridor

Zone 1

Zone 2

Zone 3

Zone 4
Femoral Nerve

- Average Diameter - 13.1 mm
- Obturator - anterior to the femoral nerve
- L5 Transverse Process - dorsal border
Neurogram and Gross Anatomy

Iliolumbar Vein
Neurogram with Retractor

L4-5 Disc
L4 Root
Femoral Nerve
L5 TP

L4-5 Disc
L4 Root
Femoral Nerve
L5 TP
Visualization of Major Nerve During OLIF

Cephalad

Posterior

Caudal
Rationale

- Iliac Crest Avoidance
- Muscle Sparing (Corridor)
- Femoral Nerve Avoidance
- All Disc Levels in One Position
- Ergonomics
- No Neuromonitoring
ALIF & LLIF Have Limitations

- **ALIF**
 - Access to above L3/L4?
 - Mobilization of Great Vessels (SHP)
 - Extensive Retroperitoneal Dissection

- **ALL LEVELS IN ONE POSITION**
 - Access to L4/L5 – Iliac Crest
 - Neurological Risk – Femoral Nerve
 - Muscular Pain – Psoas
 - No Access – L5/S1

OLIF
Rationale

- Iliac Crest Avoidance
- Muscle Sparing (Corridor)
- Femoral Nerve Avoidance
- All Disc Levels in One Position
- Ergonomics
- No Neuromonitoring

C-Arm Fixed
Reduced Flexion
Shoulder Adducted
Wrist Neutral
Neutral Flexed Spine

OLIF
Surgeon in Positive Sagittal Balance x 30 Year Career?

C-Arm Moves

Head/Neck

Shoulders

Bent Spine

Hands

LLIF

Surgeon in Neutral Sagittal Balance x 30 Year Career?

C-Arm Fixed

Head/Neck

Shoulders

Erect Spine

Hands

OLIF
Ergonomics / Working View

- Fluoroscopy remains stationary
- Surgeon and Fluoro work at same time
Surgeon & Fluoro See Disc Space Simultaneously

LLIF

OLIF
Rationale

‣ Iliac Crest Avoidance
‣ Muscle Sparing (Corridor)
‣ Femoral Nerve Avoidance
‣ All Disc Levels in One Position
‣ Ergonomics
‣ No Neuromonitoring
The Corridor Eliminates Neuromonitoring

Major Vessels

<table>
<thead>
<tr>
<th>Space</th>
<th>Unretracted</th>
<th>Retracted</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2/L3</td>
<td>18.0mm</td>
<td>24.9mm</td>
</tr>
<tr>
<td>L3/L4</td>
<td>18.8mm</td>
<td>26.3mm</td>
</tr>
<tr>
<td>L4/L5</td>
<td>14.4mm</td>
<td>23.6mm</td>
</tr>
<tr>
<td>L5/S1</td>
<td>15.2mm</td>
<td>24.8mm</td>
</tr>
</tbody>
</table>
OLIF Limitations

- Aberrant vascular anatomy
Look at MRI

- Aberrant ascending lumbar vein
OLIF Benefits

• Patient
 – Direct Visualization through ante-psoas approach
 • Less femoral nerve injury at L4/5 level
 – No table bend necessary – stretch of psoas/lumbar plexus

• Procedural
 – L2-S1 access through 1-2 incisions
 – Direct visualization
 – Sagittal plane correction through ALL release, lordotic cages at L4-5, L5-S1
 – Indirect and Direct Decompression of stenosis
• Ante-Psoas Avoids Neurological Structures Within the Psoas
• Vascular Injury Equivalent to L5/S1 ALIF
• Temporary Sympathetic Nerve Injury
• Historical Retroperitoneal Corridor
• Avoids Psoas – Less Complaints
• Avoids Neural Elements – Optional Neuromonitoring
• Consistent Access to L4/L5 – Avoids Crest
• OLIF25™ and OLIF51™: Access to L2-S1 Discs in One Patient Position
Benefits of OLIF Procedures

- Ability to Access Multiple Levels From One Patient Position (Sacrum and Above)
 - Consistent Access to L4/L5 (vs LLIF)
 - Access to Upper Levels (vs ALIF)
 - Familiar Access to L5/S1 (like ALIF)
- Ability to Directly Visualize Anterior Longitudinal Ligament and Release as Needed for Sagittal Correction
- Anterior Plate Fixation is Biomechanically Advantageous
- Anterior to Psoas
 - Decrease Muscular & Neurological Risk
 - Minimal Mobilization of Great Vessels
 - Direct Visualization of Space